
objective of a polygon reduction algorithm is to take a high-
detail model with many polygons and generate a version
using fewer polygons that looks reasonably similar to the
original. In addition to talking about what polygon reduc-
tion is and why it is useful, this article explains one method
for achieving it. Before going any further, I suggest you
download my application, BUNNYLOD.EXE, which demon-
strates the technique that I’ll explain. You can find it on the
Game Developer web site.

Motivation

B efore diving into a sexy 3D algorithm, you may be ask-
ing yourself if you really care. After all, there are com-

mercial plug-ins and tools that reduce polygons for you.
Nonetheless, there may be reasons why you want to imple-
ment your own reduction algorithm.
• The results of your polygon-reduction tool may not meet

your specific needs, and you would like to build your own.
• Your current polygon-reduction tool may not produce the

morph information that you require for smooth transi-
tions between different levels of detail.

• You want to automate your production pipeline so that
the artist has to create only one reasonably detailed model,
and the game engine does the rest.

• You’re creating a VRML browser, and you want to provide
a menu option for reducing those huge VRML files placed
on the Web by supercomputer users who didn’t realize the
frame rate would be slower on a home PC.

• Special effects in your game modify the geometry of
objects, bumping up your polygon count and requiring a
method by which your engine can quickly reduce polygon
counts at run time.

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

44

R E D U C T I O NP O L Y G O N

A Simple, Fast,
and Effective
Polygon
Reduction
Algorithm

f you’re a game developer, there’s a good

chance that 3D polygonal models are part

of your daily life and that you’re familiar

with concepts such as polygons per sec-

ond, low-polygon modeling, and levels of

detail. You probably also know that the II
b y S t a n M e l a x

Stan Melax is researching interactive 3D techniques and algo-
rithms for his Ph.D. in computer science at the University of
Alberta. He is also the Director of Technology at Bioware,
where he had worked on SHATTERED STEEL and is now imple-
menting cool stuff for their next 3D titles. He can be contacted
via e-mail at melax@cs.ualberta.ca.

Still not convinced? Figure 1 shows a concrete example of
an instance in which a game engine requires polygon reduc-
tion capabilities.

At Bioware, I implemented real-time Boolean operations
and used them in a game prototype that we developed to
impress our publisher. Players could shoot and blast arbi-
trary chunks out of a solid object wherever they decided to
point the gun. Modifying the game environment where the
bullets impact produces much more stunning results than
the typical “place pipe bomb here” technique, in which the
game world only changes in a predetermined manner.
Unfortunately, repeated use of Boolean operations per-
formed on polygonal objects generates lots of additional tri-
angles, as you can see in Figure 1. Many of these additional
faces are small or splinter triangles that don’t contribute to
the visual quality of the game — they just slow it down. The
situation demanded run-time polygon reduction, so I began
my quest to find an algorithm that would do this efficiently.

Collapsing Edges

R ather than attacking this problem
all by myself, I studied polygon

reduction with some other people at the
University of Alberta Graphics Lab. (It
helps to work with a team in order to fig-
ure out how the different algorithms
work and which technology is appropri-
ate for which task.) A lot of research has
gone into this subject recently, and most
of the better techniques are variations of
the progressive meshes algorithm by H.
Hoppe (see “For Further Info”). These
techniques reduce a model’s complexity
by repeated use of the simple edge col-
lapse operation, shown in Figure 2.

In this operation, two vertices u and v
(the edge uv) are selected and one of

them (u) is “moved” or “collapsed” onto the
other (in this case, v). The following steps
implement this operation:
1. Remove any triangles that have both u and
v as vertices (that is, remove triangles on the
edge uv).
2. Update the remaining triangles that use u as
a vertex to use v instead.
3. Remove vertex u.

This process is repeated until the desired polygon count is
reached. At each step, one vertex, two faces, and three edges
are usually removed. Figure 3 shows a simple example.

Selecting the Next Edge to Collapse

T he trick to producing good low-polygon models is to
select the edge that, when collapsed, will cause the

smallest visual change to the model. Researchers have pro-
posed various methods of determining the “minimal cost”
edge to collapse at each step. Unfortunately, the best meth-
ods are very elaborate (as in, difficult to implement) and
take too long to compute. Motivated to find a way to reduce
polygons during run time in a game, I performed many
experiments and eventually developed a simple and blazing-
ly fast approach for this selection process that generates rea-
sonably good low-polygon models.

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

45F I G U R E 1 . Effect of Boolean operations on polygon count.

Before After

vv

u

F I G U R E 2 . Edge collapse.

Original Final

F I G U R E 3 . Polygon reduction via a sequence of edge collapses.

where Tu is the set of triangles that contain u and Tuv is the set of triangles that contain
both u and v.

cost
n

u,v u v f normal n normal
f Tu Tuv

() = − × − •() ÷{ }{ }∈ ∈
max min . .1 2

E Q U AT I O N 1 . The edge cost formula.

Obviously, it makes sense to get rid
of small details first. Note also that
fewer polygons are needed to represent
nearly coplanar surfaces while areas of
high curvature need more polygons.
Based on these heuristics, we define the
cost of collapsing an edge as the length
of the edge multiplied by a curvature
term. The curvature term for collapsing
an edge uv is determined by comparing
dot products of face normals in order
to find the triangle adjacent to u that
faces furthest away from the other tri-
angles that are along uv. Equation 1
shows the edge cost formula in more
formal notation. The specific details
can also be found in the source code
(which you can dowlnoad from Game
Developer’s web site).

You can see that this algorithm bal-
ances curvature and size when deter-

mining which edge to collapse. Note
that the cost of collapsing vertex u to v
may be different than the cost of col-
lapsing v to u. Furthermore, the formula
is effective for collapsing edges along a
ridge. Although the ridge may be a
sharp angle, it won’t matter if it’s run-
ning orthogonal to the edge. Figure 4
illustrates this concept. Clearly, vertex
B, sitting in the middle of a flat region,
can be collapsed to A or C. Corner ver-
tex C should be left alone. It would be
bad to move vertex A, sitting along the
top ridge, onto interior vertex B.
However, A could be moved (along the
ridge) onto C without affecting the
overall shape of the model.

If you’re implementing your own
reduction algorithm, you may wish to
experiment with this equation in order
to meet your needs. For example, in the

case of an animating mesh, you might
want to develop a formula that will look
at more than just one keyframe when
computing the cost of a potential edge
collapse. If quality is more important to
you than the reduction algorithm’s exe-
cution time, then you should consider
using Hoppe’s energy function. We’ve
added our own extensions to deal with
texture coordinates, vertex normals,
border edges, and surface discontinu-
ities such as texture seams.

Results

T he effectiveness of a polygon
reduction algorithm is best demon-

strated by showing a model before and
after it has been simplified. Most
research papers demonstrate their
results using highly tessellated models
in the neighborhood of 100,000 poly-
gons, reducing them to 10,000 poly-
gons. For 3D games, a more appropri-
ate (and challenging) test of an
algorithm is how it demonstrates its
prowess by generating models that use
only a few hundred polygons.

For instance, Figure 5 shows a bunny
model taken from a VRML file created
by Viewpoint Datalabs. The initial ver-
sion (left) of the model contains 453
vertices and 902 polygons. Reductions
to 200 (center) and 100 (right) vertices
are shown. Hopefully, you’ll agree that
the models look reasonably good given
the number of polygons used in each
image. Figure 6 shows the conse-
quences of not selecting the right edge
to collapse at each step. In this case,
edges were chosen randomly.

After completing animal testing, we
began human clinical trials for the algo-
rithm. Figure 7 shows three versions —
at 4,858; 1,000; and 200 vertices — of a

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

46

P O L Y G O N R E D U C T I O N

B to A

A

A
A

A

AAA

B

BB

B

B

BB

C

C
CC

C
CC

A to B

B to C

Original

C to A

A to C

C to B

F I G U R E 4 . Good and bad edge collapses.

F I G U R E 5 . Bunny model at (left to right) 453, 200, and 100 vertices.
F I G U R E 6 . Random edge selection
(200 vertex version).

female human model made by Bioware.
(From Euler’s formula, we know that the
polygon counts are roughly double these
numbers.) Once again, these images are
shown with flat shading so you can see
the difference in the meshes. When
smooth shading and textures are
applied, the differences are less apparent.

Practical Application

O ur initial goal was modest: we
wanted to find a way to get rid of

a few excess polygons caused by too
many Boolean operation effects.
However, after developing the reduc-
tion algorithm and noticing better-
than-expected results on actual models,
we decided that the technique was
good enough to generate the level of
detail (LOD) models for the game
engine. An improved version of this
basic algorithm has since been incorpo-
rated into Bioware’s 3D graphics
engine, Omen. Now, for many game
objects, our artists only have to create
one detailed model. A preprocessing
step does the polygon reduction. Then,
when the frame rate falls below a prede-
fined threshold or an object is to be
rendered in the distance, a lower poly-
gon version is used instead. Being able
to make these choices at run time
increases the scalability of a game. The
game adapts itself to the horsepower of
the system on which it’s running.

Implementation Details

This algorithm only works with trian-
gles. Nothing is lost by this limita-

tion; polygons with more sides are easily
triangulated if necessary. In fact, many
applications use triangles exclusively.

Most data structures for storing polyg-
onal objects use a list of vertices and a

list of triangles that contain indices into
the vertex list. For example,
Vector vertices[];

class Triangle {

int v[3]; // indices into vertex list

} triangles[];

The Indexed Face Set node data type
used in VRML is another example of
this type of data structure. When two

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

47

F I G U R E 7. Female human model showing 100 percent of the original polygons (left), 20 percent of the original polygons (cen-
ter), and 4 percent of the original polygons (right).

class Triangle {

public:

Vertex * vertex[3];// the 3 points that make this tri

Vector normal; // orthogonal unit vector

Triangle(Vertex *v0,Vertex *v1,Vertex *v2);

~Triangle();

void ComputeNormal();

void ReplaceVertex(Vertex *vold,Vertex *vnew);

int HasVertex(Vertex *v);

};

class Vertex {

public:

Vector position; // location of this point

int id; // place of vertex in original list

List<Vertex *> neighbor; // adjacent vertices

List<Triangle *> face; // adjacent triangles

float cost; // cached cost of collapsing edge

Vertex * collapse; // candidate vertex for collapse

Vertex(Vector v,int _id);

~Vertex();

void RemoveIfNonNeighbor(Vertex *n);

};

List<Vertex *> vertices;

List<Triangle *> triangles;

L I S T I N G 1 . The enhanced data structure.

triangles on an object meet at the
same vertex, they’ll have the same
index (so they share the same entry in
the vertex list).

We’ve enhanced this data structure
as required by our polygon reduction
algorithm. One major improvement is
that we now have access to more infor-
mation than just which vertices each
triangle uses — we also know which tri-
angles each vertex bounds. Further-
more, for each vertex, we have direct
access to its neighboring vertices
(which gives us the edges). Listing 1
shows the enhanced data structure.

Member functions such as
ReplaceVertex() have been added to per-
form edge collapses during polygon
reduction. Consistency of this data must

be maintained as vertices and triangles
are added, deleted, or replaced. The con-
structors, destructors, and member func-
tions contain code to keep things in
order. We cache face normals because
they are frequently used by the edge
selection formula. In order to save us the
effort of recalculating these costs, the
best edge and its cost is cached for each
vertex. The implementation of the
member functions is fairly straightfor-
ward, so I haven’t included it in this arti-
cle. If you’re interested, simply examine
this algorithm’s source code on the
Game Developer web site. Listing 2 con-
tains the code for determining edge costs
and doing the edge collapse operation.

Performing polygon reduction is
easy given these functions. Simply ini-

tialize the vertex and triangle lists with
the object’s geometry, and then do
something like this:
while(vertices.num > desired) {

Vertex *mn = MinimumCostEdge();

Collapse(mn,mn->collapse);

}

The demo, BUNNYLOD.EXE, doesn’t
use this simple loop. Instead it creates
an additional data structure for the
animation.

Making Better Use of the Data

R ather than throwing away infor-
mation about triangles and ver-

tices that have been removed, this
information can be preserved so that a

G A M E D E V E L O P E R N O V E M B E R 1 9 9 8 h t t p : / / w w w . g d m a g . c o m

48

P O L Y G O N R E D U C T I O N

float ComputeEdgeCollapseCost(Vertex *u,Vertex *v) {

// if we collapse edge uv by moving u to v then how

// much different will the model change, i.e. the “error”.

float edgelength = magnitude(v->position - u->position);

float curvature=0;

// find the “sides” triangles that are on the edge uv

List<Triangle *> sides;

for(i=0;i<u->face.num;i++) {

if(u->face[i]->HasVertex(v)){

sides.Add(u->face[i]);

}

}

// use the triangle facing most away from the sides

// to determine our curvature term

for(i=0;i<u->face.num;i++) {

float mincurv=1;

for(int j=0;j < sides.num;j++) {

// use dot product of face normals.

float dotprod =

u->face[i]->normal ^ sides[j]->normal;

mincurv = min(mincurv,(1-dotprod)/2.0f);

}

curvature = max(curvature,mincurv);

}

return edgelength * curvature;

}

void ComputeEdgeCostAtVertex(Vertex *v) {

if(v->neighbor.num==0) {

v->collapse=NULL;

v->cost=-0.01f;

return;

}

v->cost = 1000000;

v->collapse=NULL;

// search all neighboring edges for “least cost” edge

for(int i=0;i < v->neighbor.num;i++) {

float c;

c = ComputeEdgeCollapseCost(v,v->neighbor[i]);

if(c < v->cost) {

v->collapse=v-neighbor[i];

v->cost=c;

}

}

}

void Collapse(Vertex *u,Vertex *v){

// Collapse the edge uv by moving vertex u onto v

if(!v) {

// u is a vertex all by itself so just delete it

delete u;

return;

}

int i;

List<Vertex *>tmp;

// make tmp a list of all the neighbors of u

for(i=0;i<u->neighbor.num;i++) {

tmp.Add(u->neighbor[i]);

}

// delete triangles on edge uv:

for(i=u->face.num-1;i>=0;i—) {

if(u->face[i]->HasVertex(v)) {

delete(u->face[i]);

}

}

// update remaining triangles to have v instead of u

for(i=u->face.num-1;i>=0;i—) {

u->face[i]->ReplaceVertex(u,v);

}

delete u;

// recompute the edge collapse costs in neighborhood

for(i=0;i<tmp.num;i++) {

ComputeEdgeCostAtVertex(tmp[i]);

}

}

L I S T I N G 2 . Determining the edge costs and performing the edge collapse operation.

model at any specified number of ver-
tices can be retrieved on demand with-
out having to recompute the polygon
reductions. This feature is easily imple-
mented by storing the vertex to which
each vertex is collapsed and sorting the
vertices by the order in which they
were collapsed.

The BUNNYLOD.EXE demo uses this
method. Initially, the bunny is reduced
from 450 to 0 vertices in approximately
one second. Then, as the slider on the
left animates the bunny, the model is
rendered in increasing detail using the
specified number of polygons. Another
way to think of this animation is as a
sequence of models for every number
of vertices between 0 and the number
in original model.

The edge collapse sequence could
also be used for progressive transmis-
sion. Just as interlaced .GIF and .JPG
pictures come over the Web in increas-
ing detail, the vertices of an object can
be broadcast in the reverse order from
which they were collapsed. The receiv-
ing computer can display the model
while it is reconstructed from the
incoming data stream. This is a nice
idea, but it’s probably not relevant for
game developers just yet.

An important component in many
games is the LOD of models. A handful
of models can be selected from the
sequence generated by our algorithm
to represent the object at various LODs.
One problem with swapping models is
that players often notice when this
occurs (the phenomenon known as
“popping”). A solution to the popping
effect is to morph smoothly between
the models. In order to morph between
two models, the vertices of one model
must be mapped onto the other.
Fortunately, this information can be
extracted from the edge collapse
sequence. The BUNNYLOD.EXE demo
also shows an example of morphing.

Alternatives to Edge Collapse
Techniques

P olygon reduction algorithms
aren’t the only way to create a

model with fewer faces. Artists will
always be able to do a better job of rep-
resenting a model using fewer polygons
than any reduction algorithm. One rea-
son is that algorithms have little or no
higher-level understanding of the

model. An artist, on the other hand,
knows the object that he or she is creat-
ing (be it a rabbit, a chair, and so on)
and can make careful aesthetic deci-
sions as he or she manually reduces the
face count. The human visual system is
biased towards certain details, such as
the eyes and mouth, and pays less
attention to other details such as the
collarbone or kneecaps. On the other
hand, our simple algorithm merely
compares a few dot products and edge
lengths, and obviously doesn’t have the
intelligence to place automatically
varying amounts of importance on dif-
ferent pieces to optimize for human
perception. The advantage to using a
polygon reduction algorithm is that it
automates the process.

Another technique for doing LODs
in a game is to represent an object’s
geometry using parametric surface
patches, which are tessellated on the
fly to the desired detail. Shiny’s
MESSIAH engine uses a similar
approach. Certainly, these surface-
based methods are preferable (and
probably optimal too). Figure 8 illus-
trates the advantage using a 2D analo-
gy. An octagon reduced by one edge is
regenerated as a regular heptagon by
the parametric approach. Collapsing an
edge on the octagon produces non-reg-
ular results.

Unfortunately, using curved para-
metric surfaces isn’t always appropri-
ate. Some of the challenges include get-
ting the object into this sort of
representation and being able to gener-
ate polygons at render time so that
adjacent surfaces fit together properly
(without gaps or T-intersections).
Furthermore, jagged objects aren’t
good candidates for use with curved
surface patches because the number of
surfaces would be no less than the
number of polygons required. Polygon-

based reduction methods are more gen-
erally useful, and work with typical
models used these days.

While I hope that this information
and the accompanying demonstration
application that I’ve provided are use-
ful, this article has not touched on
issues such as dealing with texture
coordinates, vertex normals, border
edges, nonmanifold topology, texture
seams, and so on. These subjects have
been left as an exercise for the reader.
Furthermore, many other variations
and enhancements to this algorithm
are worth exploring. One exciting topic
is adaptive simplification, in which dif-
ferent parts of the same mesh are ren-
dered at different levels of detail
according to run-time parameters. This
is especially useful for open terrain
environments so that more detail can
be used near the current viewpoint. ■

h t t p : / / w w w . g d m a g . c o m N O V E M B E R 1 9 9 8 G A M E D E V E L O P E R

49

Original Octagon Regenerated from circle

equation using 7 edges

Edge Collapse

F I G U R E 8 . Comparison of techniques.

Polygon reduction has been a hot
research topic lately, and most of the
literature about it can be found in pro-
ceedings from academic computer
graphics conferences. Some more
places you can look:
• Cohen, J., M. Olano, and D.
Manocha. “Appearance-Preserving
Simplification”, SIGGRAPH ‘98.
• Hoppe, H. “Progressive Meshes,”
SIGGRAPH ‘96, pp. 99-108.
• Luebke, D. and C. Erikson. “View-
Dependent Simplification of Arbitrary
Polygonal Environments”, SIGGRAPH
‘97, pp. 199-207.
• I have a demo on my university web
site at http://www.cs.ualberta.ca/
~melax/ polychop
• H. Hoppe, the Guru of polygon
reduction, maintains a web site at
http://research.microsoft.com/~hoppe/

F O R F U R T H E R I N F O

